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Neutrinos in the Kerr and Robertson-Walker geometries 

S V Dhurandhart, C V Vishveshwarat and J M CohenSO 
t Raman Research Institute, Sadashivnagar PO, Bangalore 560080, India 
$ Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19174, 
USA 

Received 24 April 1981, in final form 7 December 1981 

Abstract. The perturbative behaviour of neutrinos is examined in the framework of the 
Hertz potential formalism in two important space-times, namely the Kerr and Robertson- 
Walker space-times. In particular, the angular functions of the neutrino field are studied 
in detail on the background of the Kerr geometry. It is found that the properties of the 
solutions depend crucially on the value of the separation constant 0 defined in the text. 

It is found that the Robertson-Walker model ( k  = +1) harbours a repulsive effective 
potential for neutrinos. The behaviour of the neutrinos in the cases of the spherically 
collapsing dust interior and the k = -1 Robertson-Walker model can be deduced from 
the k = +1 case. Also exact solutions in terms of known functions are obtained for the 
neutrino perturbations for the k = 0 case. 

In the geometric optics limit ( w M  >> 1) all the results agree with the classical ones 
obtained in the null geodesic formalism. 

1. Introduction 

The Hertz potential formalism for electromagnetic perturbations was given by Cohen 
and Kegeles (1974). This method was applied to perfect fluid space-times with local 
rotational symmetry (Dhurandhar er a1 1980) and to the Godel universe (Cohen et 
a1 1980) for obtaining electromagnetic fields superposed on these background space- 
times. The approach consists in extracting full information about the fields from a 
single complex scalar which satisfies a decoupled differential equation. Subsequently, 
Kegeles and Cohen (1979) generalised the formalism to fields of arbitrary spin, in 
particular, the gravitational and neutrino perturbations. We use this formalism to 
study the neutrino fields in two important and astrophysically significant background 
metrics, namely, the Kerr and the Robertson-Walker. The more general case of the 
perfect fluid space-times with local rotational symmetry will be published elsewhere. 

In $ 2  we outline the salient features of the formalism necessary for our purpose 
and describe the general procedure for obtaining the neutrino field solutions in these 
space-times. Section 3 comprises a detailed investigation of the behaviour of neutrinos 
in the two geometries. First we treat the case of the Kerr metric and then the 
Friedmann solutions representing the cosmological models as well as the phenomenon 
of gravitational collapse. In $ 4 we compare the results derived by our formalism with 
those of other formalisms. The results pertaining to gravitational collapse are com- 
pared with those of the usual Dirac formalism (Iyer et a1 1982), which could with 
slight modification yield information on the cosmological metrics. 
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2. The general Hertz potential formalism for neutrinos 

The two-component Weyl neutrino equation is generalised to curved space-times and 
is reduced to a one-component equation for the Debye potential. With the addition 
of the appropriate gauge terms, a single decoupled equation is obtained for a complex 
scalar function I&. The Weyl spinor describing the neutrino is then just given by a 
combination of the operations of differentiation and multiplication on this complex 
scalar. The computations are carried out with the use of the Newman-Penrose 
formalism. We merely state the relevant equation for I& and mention the formulae 
which give the Weyl spinor in terms of I&. The details of this procedure may be found 
in the paper by Kegeles and Cohen (1979). 

With appropriate choice of the null tetrad ( k ” ,  n’”, m’”, f ie) ,  the equation for 4 in 
the usual notation is given by 

[ (A+/A - r ) (D+E) - (6+p-~ ) (d+p) ] I&=O,  (2.1) 

where D, A, S and d are the directional derivatives in the directions of k’”, n”, m’” 
and 61’” respectively and p, y, E ,  p and T are the spin coefficients. The components 
of the Weyl spinor are given by 

41 = -(D + 42 = -(b+P)I&. (2.2) 

The solution of equation (2.1) furnishes complete information on the behaviour of 
the neutrinos when coupled with equation (2.2). 

3. Neutrino equations 

3.1. The Kerr space-time 

The Kerr space-time is described in geometrical units (c = 1 and G = 1) by the metric 

+sin2 e[r2 + a’+ (2Ma’r sin’ 8)/1X.1’1 dq2,  (3.1) 

where M is the mass and a = J / M  the angular momentum parameter, J is the angular 
momentum, Z = r + ia cos 8 and A = r’ - 2Mr + a’. 

We make the following choice of the null tetrad which automatically aids in the 
separation of the variables when solving the equation for I&. With the convention 
U” =(U‘, U‘, ve,  U*), the tetrad consists of the following null vectors: 

k’” =Ah-’(r2+a2, A, 0, a ) ,  

m” =(l /JZZ)( ia  sin e, 0,1,  i cosec e). 
n’” =$~Z~-’(r’+a’, -A, 0, a) ,  

(3.2) 

The spin coefficients computed from equation (3.2) and necessary for our investigation 
are given by the relations 

r - M  
? = / A + -  E =o ,  A CL=-m, 21q2 ’ 
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where denotes the complex conjugate of Z. The choice of the above null tetrad 
along with the spin coefficients (3.3), when substituted into the equation (2.1), yields 
a decoupled equation for the complex scalar function (I. Equation (2.1) assumes the 
form 

ia : e )  f a a  i a  
x at  ae s in8  acp 

( a t  ae sin e acp 

-L ( i a  sin e-+-+- -+;cot e+---=--- - 

x - ias in~-+-- - -+ ico t t~) ]  a a  i a  +=o. 
(3.4) 

From the Killing symmetries of the Kerr geometry the coordinates t and cp are 
ignorable, and accordingly we may set 

(3.5) 

in (3.4) where w and m are constants related to the energy and the azimuthal angu!ar 
momentum respectively. After simplification (3.4) yields the equation 

[A  (-iw(rzpfa2) -- a +i--- am r - M > (  - io(r:a2) +-+- a iam) 

* = e-'"' etme Z(r ,  8) 

ar A A ar A 

m 
-+aw sin e--++cot 6) 

- (:e sin 0 

m 
x -- aw sin 8 +-+t cot o)] z = 0. (:e sin e (3.6) 

One finds that the r-dependent function Z drops out from the 'angular part' of the 
differential operator in equation (3.4) after simplification. Therefore equation (3.6) 
can be further separated to give a pair of ordinary differential equations in the 
coordinates r and e. If we set 

Z(r ,  6) = R(r)S(6) (3.7) 
the separated equations for R(r )  and S ( 0 )  are 

(3.8) 
d iw(r2+a2)  iam ( r -M)  d iw(r2+a2)  +--- -- ( dr A A A ) (dr  A 

A _ _ _  

(3.9) 
m 

aw sin e+-++cot sin e--++cot m e)(dB- d 
sin 8 sin 8 

Here a is the separation constant and is related to the one obtained by Carter (1968) 
in studying geodetic trajectories in the Kerr geometry. The equation (3.9) is the same 
as that of Chandrasekhar (1979). In the following discussion we study this equation 
in some detail. 

3.1.1. The equation for S ( 8 ) .  The exact solution for equation (3.7) seems difficult to 
obtain in terms of well known functions. However, for large values of w, m and (Y it 
is possible to cast this equation in the effective potential form. For a solar mass Kerr 
black hole, large values of the separation constants (wM >> 1 etc) are physically more 
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viable. We neglect the terms 4 cot 8 appearing in equation (3.9) and also the linear 
terms in m and w. We have the equation 

(3.10) 

If one compares equation (3.10) with the first integral of the null geodesic equations 
for pH, where pH is the 8 component of the particle’s 4-momentum, one immediately 
sees that a plays a role similar to K (Carter 1968). If, in analogy with the classical 
considerations, we define Q by the equation 

a = (aw -m)’+Q, (3.11) 

d2S/d8’ + ( a  + 2amw - a’w‘ sin‘ 8 - mz/sin2 8)s = 0. 

the equation for S ( 8 )  becomes 

d’S/d@’+[Q -cos2 8(m2/sin2 8 -a’w2)]S = 0. (3.12) 

Setting Q = Q/w’ and f i  = m/w, the equation can be written as 

d2S/d8’+w2[Q- V ( 8 ) ] S = O ,  (3.13) 

where 

~ ( 8 )  = cos’ e(rii’/sin’ 6 - a 2 ) .  (3.14) 

We may note here that by putting s= (sin 8)”’s equation (3.9) can be written 
exactly as 

f i  
sin 8 

- w c o s e ( T + a ) ]  S = O .  

Then, with the approximations outlined above, this equation reduces to (3.13). 
Oscillation of the wavefunction indicates that the neutrino is free to travel, while 

the damping represents the inability of the neutrino to enter the particular region. 
The solutions for equation (3.13) can be obtained in the WKB approximation, since 
w is large. The solutions are oscillatory when 0 > V ( 8 ) ;  otherwise they are damped. 
Therefore, it is necessary to study the potential function V ( 8 )  for various values of 
the parameters f i  and a. 

The potential function V ( 8 )  is symmetric about I9 = ~ 1 2 .  For f i  = 0, we must have 
0 > - a’ cos’ 8 for solutions to be oscillatory. Two cases arise according as Ifi 13 a 
or jrii/<a. 

( i )  I f i l > a  
In this case V (  8 )  > 0 with the minimum value zero at 8 = x/2.  The necessary condition 
for solutions to be oscillatory is that 0 be positive. For a given choice of 0 = a,, > 0, 
S ( 8 )  is oscillatory between 8 = Bo and 8 = T - Bo where 8(, is the root of the equation 
V ( @ )  = Qo. This region of oscillation includes the equatorial plane 8 = ~ / 2 .  As 8 + 0 
or T ,  V (  13) + CO. Therefore, the angular function $ 8 )  is damped near the axis. 

( i i )  l f i l < a  
The shape of V ( 8 )  is more complicated. V ( 8 )  has two minima at = sin ’ (rii/n ) ‘ I ’  

and O 2  = ‘TT -sin-’ ( r T i / ~ ) ” ~ ,  where the inverse trigonometric sines have values which 
lie between 0 and 7~12. V ( B I )  = V ( 8 2 )  = - (a  - fi)’ is the value of V ( 8 )  at these 
minima. V ( 8 )  vanishes at 8 =  ~ / 2  and grows without bound as 8 approaches zero or 
‘TT. The solutions with - ( a  - 61 )2  < 0 < 0 are oscillatory in regions which lie on either 
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side of the equatorial plane while the solutions with Q > O  resemble those of case 
(i). We get a degenerate case as we let m -* 0 in the above considerations. 

The graphs of V ( 8 )  for the two cases IAlda  and the degenerate case A = O  are 
shown in figure 1.  

b 
i 

I 

Figure 1 The effective potential curves V as a function of 0 are drawn for different values 
of the parameter f i l a ,  namely (a) 1.25, (b) 0.25 and (c) 0. The curves exhibit essentially 
two types of behaviour according as f i / a  is less than or greater than unity. We have 
depicted one typical curve for each of the two cases. The degenerate case of m = O  is 
also shown. Curve (b) possesses two minima, one on each side of the equatorial plane 
0 = 90", while curve (a) has only one minimum at e = 90". This reflects strongly on the 
behaviour of S e ) .  

3.1.2. The radial equation. The radial equation in general has been discussed in fuller 
detail in the literature (Chandrasekhar 1979) than the angular equation in 8. We 
therefore present here a brief account of the relevant aspects of the radial equation. 

Equation (3.8) may be expanded to give 

2 -+----+ d2R 1 1  d A d R  
dt2  2 A dr  dr  

i(r - M )  [w(r2 + a 2 ) - am] ---- 2iwr a ) R = O .  
A h  

+- 
A2 

(3.15) 

The term in the first derivative of R can be made to disappear by defining a new 
dependent variable 

d(r) = R(r)A"4. (3.16) 

( r )  by the relation 
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The equation for R then reads 

d2Rldr2 + f ( r )R = 0, 

where 

f ( r )  = A - 2 { [ w ( r 2 + a 2 ) - a m ] 2 + i ( r - M ) [ w ( r 2 + a 2 ) - a m ]  

+ :(r - M)’ - A ( a  + 4 + 2iwr)). 

(3.17) 

In the limit wM >> 1 the equation resembles the first integral of the null geodesic 
equation in r with w replaced by E, m by L, and a by K .  One simply considers 
terms quadratic in w and m and the term in a and neglects all other terms. The 
resulting equation is 

d2R/dr2 + (w2/A2)[(r2 + a’-  a*)’- a A / w 2 ]  R = 0. (3.18) 

To obtain the solutions for R( r )  one must resort to numerical integration. 

3.2. The Robertson- Walker space-times 

The Robertson-Walker space-times are described by the geometry 

ds2=dT2-S2(T)[dR2/(1  -kR2)+R2(d8’+sin2 8 dq2)], (3.19) 

where k = *l, 0, and (R, 8, cp) are the comoving spatial coordinates of a particle; T 
is the cosmological time which is also the proper time for the particle and S (  T )  is the 
expansion factor. The k = +1  model represents the closed universe while the k = 0 
and k = -1 models represent open universes which expand for all times T. With a 
slight modification of the metric in (3.19) one obtains the model of a spherically 
symmetric object collapsing under its own gravitational pull. 

We shall first treat the k = +1  and k = 0 cases in detail and indicate the calculations 
for k = -1 and the case of the collapsing object. Although it may be possible to 
examine all cases simultaneously by defining variables which possess different func- 
tional forms in each of the cases, it seems instructive to study one particular case for 
the sake of concreteness and merely notice how the solutions are modified in the rest 
af the models. 

3.2.1. The k = 1 model. It is convenient to define two new variables U and q by 
the relations 

d T  
R = sin U, (3.20) 

Then (3.19) assumes the form 

ds2 = S2(q)[dq2-du2-sin2 u(d02+sin2 8 dq2)]. (3.21) 

The metric given by (3.21) falls into the category of perfect fluid space-times with 
local rotational symmetry (Dhurandhar et a1 1980). Following the notation of this 
reference, we have F = 1/S, X = S, Y = S sin U, t =sin 8 and with the formulae for 
the spin coefficients and the directional derivatives given there we list the quantities 
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necessary for equation (2.1): 

1 S' 
&=-ZSZ' 

i a  l a  
2 J 2 ~ s i n u '  s at7 s au 

p=---.- 1 cot 0 7 = 0 ,  do=------, 

J%=- & A = - - - + - - ,  i a  i a  
s a 7  s au 

where the prime denotes differentiation with respect to 7. 
The equation for the scalar 4 is 

(3.22) 

(3.23) x -+- i a  -+$cot e>(--- a i a  - +;cot@)] * = o .  
(:0 sin 0 acp ao sin 0 acp 

The equation (3.23) can be easily separated out by setting 

rL =Z(t7, U)@(@, cp ) .  

We have the following equations for Z and 0 :  

(3.24) 

C 

a u  2 s 
(3.25) 

(3.26) 
(-+--+;cot a i a  @)(--- a i a  

ao sin 0 acp ao sin 0 a q  

where c is the separation constant. 

simply state the solutions, 
The solutions for (3.26) can be given in terms of the Jacobi polynomials. We 

0 = (1 -cos 1 +cos O ) p ' ~ 2 P ~ ' * p ' ' ( c o s  0) e'"', (3.27) 

where m is an integer and n a positive integer, 

1 1 
a'= Im +?I, P' = Im -51, 

and the separation constant c takes the values given by 

c = (n + m + $)2. (3.28) 

Equation (3.25) is easily separated if we change the dependent variable to 2 by 

Z = JSZ. (3.29) 

the transformation 

Then (3.25) becomes 

a2 2 a a2 c o t u - - - 7 - - c o t u - + ~ ) Z = 0 .  a c -  (q- a17 au a u  sin U 
(3.30) 
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Since q is ignorable in equation (3.30), after setting 2 = e'""Z,(u), we obtain an 
ordinary differential equation for Z, : 

sin U 

With the further transformation 

.&,(U) = (sin U)"~Z,(U)  

(3.31) 

(3.32) 

we obtain an equation for 2, in a 'Schrodinger' form 

d2~, /du2+(w2-c /s in2  u+acot2 u+$+iw cot u)&=O. (3.33) 

The solution to (3.33) can be obtained by the WKB approximation when it is valid. 
For large values of w and c (in the geometric optics approximation) the last three 
terms in the parentheses may be neglected and the equation becomes 

(3.34) 

The solutions to (3.34) compare well with the classical null trajectories. 
We now indicate how the above computations may be applied to the geodetic 

gravitational collapse of a spherical object. The Friedmann interior metric for dust 
(pressure p = 0) is given by 

d2&,/du2 + (U' - c/R ')k, = 0. 

ds2=dT2-S2[dR2/(1  - aR2)+RZ(de2+s in2  8 dq2)] (3.35) 

where 

a = 2m/R;7 

and R, is the maximum radius of the object in the exterioi Schwarzschild coordinates 
at the beginning of the collapse. We replace S by S/Ja in the above calculations 
and define U and q by the relations 

- 
Ja d T  

sin u = J&R, (3.36) 

Then 

s = sin2 (tq), (3.37) 1 1 T =  CY-"^(!^ -sin 2q cos ~ q ) ,  

where q varies from T to 2.n as the collapse progresses. 
The results are essentially the same with the effective potential for the radial 

function varying as 1 / R 2  just as in equation (3.34). 
Finally the neutrino behaviour for the k = -1 case can be easily obtained from 

the equations corresponding to k = + l .  A formal replacement of R by iR and S by 
is and similar transformations for the intermediate variables q and U yield equations 
analogous to the k = +1  case. However, the physical significance is different and can 
be conveniently obtained from the resulting equations. 

3.2.2. The k = 0 model. We shall not enter into full discussion of the equations as 
was done for k = +1, but mention the salient steps which lead to the final solution. 

The geometry is described by the line element 

d s 2 =  -dT2+S2[dR2+R2(d82+sin2 8 dq2)]. (3.38) 
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As before we define a new time coordinate 7 by 

d T  .=js. (3.39) 

We will not mention here the spin coefficients or the directional derivatives, but 
directly write down the equation satisfied by the Hertz potential (I,. The equation 
(2.1) becomes 

i a  i a  i a  i a  1 

i a  a i  x -+--+;cot e)(--- - a +;cot e)] (I,=o. (d"e sin 8 acp ae sin e acp 
(3.40) 

The separation of the (R ,  q )  coordinates and the angular coordinates (8, cp) is achieved 
by setting 

(3.41) (I, = Z(T, R)@(e, cp). 

The two separated equations for Z and 0 are given by 

( s a ~  S aR R'S 
---+--+ i a  i a  z + c ~ = o ,  z 

:')( S 377 S aR 2 S2 

(-+- a i a  -+;cot e)(--- 
a@ sin 8 acp a6 sin 6 a q  

(3.42) 

(3.43) 

Here c is the separation constant. Equation (3.43) is the same as equation (3.26) for 
the case k = +1 and therefore we shall not discuss it further. The radial-temporal 
equation is however different. With the choice of a new dependent variable defined 
by 

2 = JSZ (3.44) 

we obtain an equation in which 7 is an ignorable coordinate. The equation for 
Z is 

a2 l a  a2 l a  ( 2 - z  G - Z - R  
As in the earlier case, we define .Z?u through the relation 

Z = (eEw"/JR) iw.  

Then equation (3.45) transforms to 

d2.& f dR' + [w' + iw/R - (c - a)/R 'I.k, = 0. 

The solutions to this equation can be written in terms of 
functions, 

(3.45) 

(3.46) 

(3.47) 

confluent hypergeometric 

(3.48) 
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4. Discussion 

As can be seen from the foregoing calculations, the Hertz potential formalism provides 
a convenient framework for exploring the behaviour of neutrinos in the Kerr and 
Robertson-Walker space-times. The equation of the angular function S(t9, c p )  in the 
Kerr geometry is the same as that obtained by Chandrasekhar (1979). We have 
studied this equation in detail since to the best of our knowledge it has not appeared 
in the literature. It is found that the pattern of oscillation and damping of the solutions 
depends critically on the value of the separation constant Q. The solutions are always 
damped near the axis irrespective of the values of 0, while there are regions of 
oscillation on either side of the equatorial plane if Q is negative. The radial equation 
has been investigated sufficiently in the literature. We only remark here that in the 
high-frequency approximation the results agree with those obtained by classical means. 

In the Robertson-Walker models we have examined the k = 0 and k = +1 cases 
fully, while we have indicated the calculations and results for k = -1 and for the case 
of a collapsing dust interior with spherical symmetry. The behaviour compares 
favourably with that obtained either by the conventional Dirac formalism or by a 
purely classical treatment involving the usual equations. 

In the geometric optics approximation the behaviour of the neutrino is similar to 
that of the electromagnetic field. However, if one does not resort to this approximation 
there is a difference in their propagation. This comes about because the neutrino and 
the photon possess different spins. 
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